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ABSTRACT 

We show that the well-known equivalence between the mean-value theorem 
and harmonicity extends to arbitrary measures of compact support: a con- 
tinuous function satisfies the generalized mean-value condition (1) with respect 
to a given measure if and only if it is annihilated by a certain system of homo- 
geneous linear partial differential operators with constant coefficients deter- 
mined by the measure. Extensions of this result are obtained, primarily in the 
direction of replacing systems of differential equations by a single equation. 

In this paper  we are concerned with determining necessary and sufficient 

conditions for a function to satisfy a generalized mean-value theorem of the form 

f u(x + rt)dl~(t) = O. (1) 

Here,/a is a finite complex Borel measure supported in the closed unit ball in R ~, 

u is a continuous function on some domain ~ in R ~, and (1) is required to hold 

for all x e ~  and 0 < r < d is t (x ,d~) .  

Special cases of  (1) are familiar from potential theory and complex analysis. 

Thus, if  # -- f~ - 50, where f /denotes  the uniform distribution of  total mass 1 on 

the unit sphere S n- 1 in ~ and 60 is the (unit) point mass at the origin, (1) becomes 

the classical mean-value condition characterizing harmonic functions. For  n = 2 

and d~t = dz (restricted to the unit circle), a necessary and sufficient condition that 

(1) hold is that u be holomorphic. Here, sufficiency is a trivial consequence of  

Cauchy's  theorem, while necessity follows from a variant of  Morera ' s  theorem 

due to Carleman (see [-40]). It was the attempt,  on the one hand to explore the 

close formal connection (already emphasized in 1-40-]) between the Morera- 

Carleman theorem and the Koebe-Levi-Tonelli converse to the mean-value 
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theorem for harmonic functions, and on the other hand to understand the curious 

if-and-only-if nature of  these theorems that led to the present investigation. It 

will transpire (cf. [23, p. 39]) that this last phenomenon is far from an isolated 

occurrence: indeed, whole classes of functions defined by certain differential 

equations are characterized by (1) for appropriate choices of  p. 

The study of  generalized mean-values is not new, but previous authors have 

restricted themselves to measures of  the form # = v -  ~o, where v is a positive 

measure of  total mass 1 not concentrated on a hyperplane. In this case, the 

solutions to (1) are all real-analytic and satisfy a system of linear partial dif- 

ferential equations determined by v. When all solutions of  (1) are harmonic, the 

problem arises of  characterizing the solution space of  (1) explicitly. Problems of  

this sort were first studied by Walsh [37] and have been considered by numerous 

authors, including Beckenbach-Reade I-4], [51, Br~Jdel [91, Choquet-Deny [11], 

Flatto [15-18], Friedman-Littman [191, Garsia [201, and Garsia-Rodemich [21]. 

The emphasis of  the present work is in quite a different direction. Because of  

this, and because the measure # is not assumed to have a special form, the in- 

tersection of our results with earlier work on these lines is quite small. Our work 

also connects with some recent activity [1], [31, [141, [24], [33] in the area of  

functional equations; the overlap is minor and, at any rate, our approach is more 

systematic and our results considerably more general. 

The paper is organized as follows. Section 1 contains a generalization of 

Pizzetti's formula [271, [28], interesting in its own right, which will be of use in 

the sequel. Section 2 deals with the problem of characterizing function classes by 

conditions like (1). We prove that, for a given/z, (1) is equivalent to an infinite 

collection of linear partial differential equations 

Q,~(D)u = 0 n = O, 1 ,2 , . . .  

where each Qn is a homogeneous polynomial of  degree n and solutions are un- 

derstood in the weak (distributional) sense. If  P(~x, "", 4n) is a homogeneous 

polynomial, there exists a measure # such that u E C(~) (or, more generally, 

u e Llloc(~)) is a weak solution to P(D)u  = 0 if and only if (1) holds. The choices 

P(41,42) = 42 + 42 and P ( ~ ,  42) ~--- 41 "Ji- i42 yield the results for harmonic and 

analytic functions mentioned above. Although the measure /z is by no means 

unique, it is easy to characterize the class of measures having the required property. 

In Section 3, we discuss our results in the context of  the "two-circle" theorems 

of  [401 and indicate how they extend to this situation. Related ideas are developed 
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in Section 4, where we treat a question concerning the vanishing of certain Fourier 

coefficients; these results, which are related to those of the preceding section, were 

mentioned briefly in [40]. Section 5 concludes the paper with remarks on a 

natural modification of condition (1) and some indications for future research. 

We employ the standard multi-index notation. Thus, z = (z~, ..., zn), 

= ~" and so forth. The Fourier-Laplace transform of a . . . ,  zn,  

distribution T of compact support is given by ~(z) = < T, e-~(z'r The symbolic 

vector ( - i a /ax l , . . . , - i a /ax~ )  is denoted by D. With minor exceptions, our 

notation follows that of [22]. For the theory of linear partial differential equations 

with constant coefficients, see 122] and [34]. Treatments of the deeper properties 

of these equations, especially the exponential representation of solutions to systems, 

are found in [13] and [26]; a closely allied reference is [6]. The standard reference 

on distributions is [30]. We shall also require some basic facts from the algebra 

of polynomials; everything we need on this line may be found in [35]. 

Several of the results of this paper have been announced at various times in the 

Notices of the American Mathematical Society. 

lo 

Let # be a finite complex Borel measure of compact support on ~" and set 

F(z) = I e-iC"t)dl~(t)' 
d R .  

the Fourier-Laplace transform of St. 

THEOREM 1. Let ~ be a domain in R," and u a real-analytic function defined 

on ~ .  Then for each x ~ ~ we have 

(2) J u(x + rt)dla(t) = [F( - rD)u] (x) 

for all r > O for which the left-hand side exists and the right-hand side converges. 

PROOF. The right-hand side is, of course, to be interpreted operationally. Since 

has compact support, the left-hand side exists for small r and is, moreover, 

obviously analytic in r. Since F is of exponential type and p is real-analytic, the 

right-hand side also exists and is analytic for r sufficiently small. It is therefore 

enough to prove equality for small r. We have 



342 L. ZALCMAN Israel J. Math., 

f e-i("Odp(t) ,f ~ [-- i(z't)]kdp(t) 
k=O 

,~ ( - i)~ 

k = 0  k ]  [I,I =k 

~', 1 v ( -  iz)" f t~dp(t)} �9 

On the other hand, if u(x + ~) = ~ a,(x)~ ", 

f u(x + rt)dl~(t) = f { ~ a'(x)rl'lt~} dp(t) 

since a,(x) = (1/M) (3t~[ /gx~ ' ~" �9 .. ex. )u(x). 
Particular cases of this result are well known. Thus, when n = 2 the choice 

d# = (1/2z 0 dO on the unit circle gives rise to 

1 fo 2" 2zr u(z + re i~ = [Jo(r x/--ZA)u](z) 
(3) 

.=o  ~ 2  T A"u(z), 

the familiar formula of Pizzetti [27], [28]. (Compare the incorrect spellings of 

Courant-Hilbert [12, pp. 287, 812] and Nicolesco [25, pp. 7, 50].) Here, of course, 

the Fourier transform of # is given by the Bessel function Jo(,]~~ + zl). If we 

choose # to be normalized Lebesgue area on the unit disc, the corresponding 

Fourier transform is 2J~(x/z ] + z~)/x/z~+ z~ and we obtain 

lfo2 y o, u(z + rpe~~ = ,=o ~ n! (n + 1)! 
/ 

By way of analogy, we shall call (2) the oeneralized Pizzetti formula. 
The Pizzetti formula can be used to generate mean-value theorems for solutions 

to certain differential equations. Classical results in this direction include the 

identity 
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1 
(4) 2re 

valid for solutions 

relation [39] 

(5) 

MEAN VALUES 

- -  u(z + rein)dO = ~ A'u(z), 

of the polyharmonic equation AN+Xu =0 ,  

343 

and Weber's 

fO t: 
1 u(z + rein)dO = Jo(r ~/c)u(z), 

2~ 

which holds for solutions of the Helmholtz equation Au + cu = 0. These formulae 

admit considerable generalization. Indeed, each choice of measure dp(pe i~ 
= dr(p) • dO/2z~ concentrated on the unit disc generates a formula 

f / r \2. (6) u(z +rt)d#(t)= ,=o ~ ~1  ~_~) A,A"u(z) 

where A, = f~(p/2):"dv(p), and each of these, in turn, gives rise to analogues of 

(4) and (5). In dimensions higher than 2, similar formulae hold. 

We should mention further that (6) in particular leads to an infinite number 

of mean-value theorems for polyharmonic functions. Indeed, let (a o, a a, "", aN) 

be a solution of the system 

N 
~, a jr 2k = 6Ok k = O, 1,. . ' ,N. 

1=0 

If we denote the point mass at 2rj by 5j, the product measure 

/.t = (j=~ ~ aiSj(p))• 

satisfies 

f u(z rpei~ O) = u(z) + 

for every function satisfying A N+ l u = 0 and all sufficiently small r. Of course, 

similar formulae obtain with other choices of measures. For a fairly detailed study 

of related questions, see Poritsky [-29]. 

A final application of Pizzetti's formula and its higher dimensional analogues 

concerns differential equations satisfied by certain mean-value operators. Thus, it 

is obvious from (3) that for real-analytic u 

1 fo 2~ I(z, r) = ~ u(z + re~~ 

satisfies the two-dimensional Euler-Poisson-Darboux equation 
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a2I 1 ~I 
ar 2 + r c]r AzI,  

where Az = a2/0x2+ a2/~y 2 is the Laplacian. Appropriate choices of /,t in 

Theorem 1 lead to similar differential relationships. Once the differential equation 

is known, it can then be verified for (nonanalytic) functions with the appropriate 

degree of smoothness. 

2. 

Suppose now that u is real-analytic and satisfies (1). Then by the generalized 

Pizzetti formula 

(7) • ( -  1)l~lrl~lA~D~u(x) = O, 
r 

where F(z)  = Y_.~A~: is the Fourier-Laplace transform of p. Equivalently, 

(8) Qn(D)u = 0 n = 0, 2 , 2 , . . .  

where Q,(D) = E ~ ~A~D ~ It is thus clear that a necessary and sufficient condition i i  = 
for a real-analytic function u to satisfy (2) is that u be a solution to the system (8). 

The corresponding condition when no smoothness assumptions are made on u is 

most conveniently formulated in terms of weak solutions. 

THEOREM 2. The  funct ion  u ~ C(~) satisfies (1)for each x ~ ~ and all r such 

that 0 < r < dist (x ,8~)  i f  and only i f  u is a weak  solution in ~ of  the sys tem (8). 

PROOF. For convenience, set u = 0 off ~ .  I f  ~b is a C ~~ function of compact 

support in ~ ,  we have for each integer N _~ 0 

f dp(x - rt)dt~(t) = 2 :Qn(D)dp(x) + o(r N) 
n = O  

uniformly for x e ~ .  Thus, if u satisfies (2), we have, for 0 < r < dist (supp ~, ON), 

o : 

for each N > 0. Choosing N to be the smallest integer for which QN does not 

vanish identically, dividing by r N, and making r ~ 0, we obtain 



Vol. 14, 1973 MEAN VALUES 345 

f u(x)QN(O)q~(x)dx = O. (9) 

It now follows by induction that (9) holds for N = 0,1,2,... so that u is a weak 

solution of (8). 

The converse lies considerably deeper. According to the Hilbert Basis Theorem, 

the polynomial ideal generated by the Q,(~) (n = 0,1,2,...) is finitely generated. 

Thus the system (8) is equivalent to thefinite system 

(10) Q,(D)u = 0 n = O, 1 , . . . ,N  

for some integer N. Now fix x ~ ~ and let A(x) be the largest ball about x lying 

in ~.  It follows from a very deep and important theorem of Ehrenpreis and Pala- 

modov, [13] and [2@ on the exponential representation of solutions of systems 

of linear partial differential equations with constant coefficients that each solution 

of (10) may be approximated uniformly on compact subsets of A(x) by real- 

analytic solutions of (10). From this, it is clear that (1) must hold for all 

r < dist (x, O~). 

In certain situations, the system (8) is completely redundant and may be replaced 

by a single equation of the form P(D)u = 0, where P is a homogeneous polynomial. 

This is the case, for instance, when/~ = f~ - 6o and gives rise to the fact that the 

mean-value property is a necessary as well as a su~cient conditicn for harrr.cnicity. 

The general situation is described in the following result. 

THEOREM 3. The system (8) is equivalent to 

(11) e(D)u = 0 

i f  and only i f  the (homogeneous) polynomial P divides each of  the polynomials 

Q. and, for  some n, P = cQ., c a constant. 

Proof. Half of the theorem is trivial. Suppose then that the system (8) and the 

single equation (11) have the same solutions. Fix n such that Q. ~ 0 and write 

P = P1P, Q. = 0 .  P, where P is the greatest common factor of P and Q. (unique up 

to a multiplicative constant). For each z ~ C" the equation 

ff(D)v = exp [i(z. 4)] 

may be solved on •" [22, p. 82]. Hence, if Pl(Z) = 0, we have 

P(O)v = Pl(O)P(O)v = Px(O){exp [i(z. ~)]} 

= e~(z) exp [i(z. 4)] = 0, 
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so that Q~(D)v = 2~(z) exp [i(z. ~)] = 0. Thus, 2~ vanishes whenever P:  does, so 

that (Nullstellensatz!) P:  divides a power of  2 , .  Since P~ and Q, are relatively 

prime, P:  is constant and so P divides Q,: Q, = 2nP. If  the degree of 2~ is greater 

than zero for all n, any solution of  P(D)u = 1 satisfies (8) but not (11). Hence 

Q, = cP for some n, and it is clear that this is the smallest index for which Q, 

does not vanish identically. 

Now let P(~) be a fixed homogeneous polynomial. Combining Theorem 3 with 

(2) and (7), we see that (1) is equivalent to P(D)u = 0 if and only if•(z) = P(z)h(z), 

where h is entire and h (0 ) r  0. By the Paley-Wiener Theorem [22, p. 21], 

h(z) = ~(z) for some distribution T of  compact support and/~ =P(D)T. For a con- 

crete realization, let X be any sufficiently smooth function supported in the unit ball 

having nonvanishing integral, and set d/~ = P(D)x(t)dt. Summarizing, we have 

THEOREM 4. For each homogeneous polynomial P there exists a finite 

measure It of compact support such that for N ~ R ~, u ~ C(N) is a weak solution 

of P(D)u = 0 if and only if 

f u(x + rt)dl~(t) 0 

for all x ~ N and 0 < r < dist (x, ON). In fact, any measure of the form P(D)T, 

where T is a distribution of compact support such that i f ' (0 ) r  0, has the 

required property. 

Of  course, not every such measure need arise from a smooth function; indeed 

formulae involving singular measures are often of  particular interest. Although 

the most familiar examples of such formulae occur in the theory of analytic and 

harmonic functions, the phenomenon is by no means restricted to such special 

classes. Thus, the weak solutions to 

(12) anu 0nu 
0z n + ~ = 0 

are characterized by the condition 

f0 s u(x + rcos0,  y + rsin0) [cos nOId 0 
tsin nO ~ = O. 

When n = 2, (12) becomes d'Alembert 's equation ux:, - uyy = 0; the corresponding 

mean-value condition was observed by Shapiro [31] in a rather different context 
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3. 

In [40], we showed how the theory of  mean-periodic functions of one variable 

could be combined with distributional Fourier transform techniques to charac- 

terize functions obeying certain integral conditions on two circles (of fixed radius) 

about each point in the complex plane as solutions of  equations of the form 

o"+mf/Oz"O~ " = 0. It is easy to cast Theorem 4 into a similar mold. Let # be a 

finite measure of compact support and let S = S(~) be an at most countable set 

of real numbers. We say that # determines the differential equation P(D)u = 0 if 

the condition 

(13) f u(x + rt)dl~(t) = 0 

for almost all x E R" and r = r l ,  r2 is equivalent to P(D)u = 0 (weakly) whenever 

U E Llloe(~ n) and rl / r2 r S. 

THEOREM 5. For each homogeneous polynomial P(~I , ' " ,~ , )  there exists a 

compact measure p, absolutely continuous with respect to volume, which deter- 

mines the differential equation P(O)u = O. 

PROOF. Let P be given. Let g be a smooth radial function of  compact support 

which has nonzero integral and set dp = P(D)z(t)dt. Then/~(z) = P(z)F(z), where 

F is the Fourier transform of  Z. Now F is an even entire function of the complex 

variable ~ = x/z~ + . . .  + zZ,; thus, writing F(z) = ff(~), we have if(0) = F(0) ~ 0. 

We may rewrite (13) as the convolution pair 

/ ~ l * u  = 0 /~2*u = 0 

where/~j(z) = / ~ ( -  rjz). Let S(#) = {(~/(2 : ff((~) = if((2) = 0}. Then if rl/r2 ~ S, 

F(rlz) and F(r2z) have no common zeroes. Proceeding as in [40], we see that if 

u ~ L~or satisfies (13) it must be a distributional solution to P(D)u = 0. Con- 

versely, if P(D)u = 0, then for each measure v of  the form P(D)T we have v*u 

= P(D)T,u = T,P(D)u = 0. Since P is homogeneous, the measures /~j have the 

required form, so that (13) holds for all r. 

It is easy to see that the preceding result is limited to homogeneous polynomials. 

For  suppose the differential equation P(D)u = 0 is determined by # and let u be a 

continuous solution of P(D)u = 0. It then follows that (13) must hold for all x 

and r, and the discussion of  the previous section shows that P must actually be a 

homogeneous polynomial. On the other hand, there are nonhomogeneous dif- 

ferential polynomials whose solutions satisfy conditions like (13) for certain thin 
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sets of r. An example is already provided in R 2 by the equation Au + cu = 0 

(c > 0), dp(e i~ = dO. Comparing (13) with (5), we see that (13) is satisfied for 

r = x, / x/c, where (x,} is the collection of positive zeroes of the Bessel function 

J0(z). 

4. 

Our concluding result, which arose in response to an inquiry of Jean-Pierre 

Rosay, introduces a new variation on the theme of [40]. 

THEOREM 6. Let feL~oc([~ 2) and let r > 0 be fixed. Suppose there exist 

integers n, m such that for almost all z ~ C 

(14) 

Then 

f f ( z  + rei~176 dO = 0 

f f ( z  + rei~ ira~ dO = O. 

(a) if 0 < n < m, f agrees almost everywhere with a solution of tg"f l tg~" = 0; 

(b) if  O > n >  m, f agrees almost everywhere with a solution of 

alnjf /Oz Inl = 0; 
(c) if n > 0 > m, m ~ - n, f agrees almost everywhere with a solution of the 

pair of equations ~"f / ~ "  = O, t~l"lf / t~z [mj = O. Thus, in this case f is (essentially) 

a polynomial. 

Here solutions are understood in the strong sense. 

For the proof we need the following 

LEMMA. Let n and m be distinct integers, m ~ - n .  The Bessel functions 

J,(z) and Jm(Z) have no common zeroes other than z = O. 

Of course, when n and m differ by one, this result is classical. The assertion of 

the lemma (known as Bourget's hypothesis, after J. Bourget, who conjectured it 

in [7]) is considerably more difficult and lies much deeper. It follows from the 

result of Carl Ludwig Siegel [32] that the zeroes of J~(z) are transcendental 

whenever ~ is algebraic; cf. [38, pp. 484-485]. 

PROOF. We prove (a) and (c); (b) follows from (a) by complex conjugation. In 

case 0 < n < m, the Fourier transforms of the measures/t  k --- eik~ restricted to 

the circle J z] = r are given by 

- - ~  ~2-T/-~2 k ~k(Zl, Z2) = 2;r(Z 2 -- izl)kJk(r ~/Z 2 + Z2)/(%/Z 1 + Z2) k = n, m. 
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From (14), which may be written as 

we obtain 

~. , f  = 0, ~. , , f  = 0, 

~"~ , f  = 0, ,~"T.,,~ 0 

or, equivalently, 

(15) T.. a"f 0"f ~-ff = 0, Tin* ~ = 0 .  

Here derivatives are taken in the distributional sense and the distributions T., T., 

of compact support are determined by 

]'.(zx,z2) = 27rJ.(r x / z  2 + z 2 )/(~/z 2 + z2)" 
t l  

2?,.(Zl,Z2)= 2n(Z2 tzl) J,.(rx/ 1+ Zz) / (x /z l  + z2) . 

Since i". and ~m have no common zeroes, it follows as in [40] that (15) implies 

O"f[ 0~" = 0 as a distribution. Weyl's lemma then yields the assertion in (a). 

The proof of (c) is only slightly more complicated. The Fourier transforms of 

the measures #n = e~"~ ~,. = e i'~ dO on ]z] = r are now given by 

~ , ( z l ,  z2) = 2~z(z 2 - izl)nJn(r N/z 2 + z 2) ](x/z 2 + z2) n 

/~m(Zl,Z2) = 2~(Z 2 + izl)lr"lj,.(r~/z 2 + z 2 ) / ( ~ / z - ~ 2 )  I"l. 

Since g.*f = 0, g , . . f  = 0, we have 

c3~. - o ,  0 - F . j = o  

or  

a'7 a"f T,,,--~ = O, m,* ~ = 0 

where T. is as before. Since ~. and/~,, have no common zeroes, a" f /~"  = O. A 

similar argument shows alr~lf /Oz Iml = O. 

Theorem 5 has an attractive (and obvious) interpretation in terms of the 

Fourier coefficients of the restriction o f f  to circles of radius r. It is sharp in the 

sense that the result fails in case n = - m  or only one Fourier coefficient is 
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specified; examples are easily constructed along the lines indicated in 1-40]. Of 

particular note here is the fact that, unlike previous results, no exceptional set 

extrudes itself into the present theorem. 

p 

In closing, we wish to remark briefly on the condition 

xy 
(16) lira - ~  u(x + rt)d#(t) = O, 

r " * O  

where u e C(N) and (16) is to be satisfied pointwise in 9 .  Suppose/~ is orthogonal 

to all polynomials of total degree less than k and that u s Ck(N). It is then easy to 

see that (16) is equivalent to the single equation P(D)u = 0, where P is the homo- 

geneous polynomial of degree k which is the first nonvanishing term in the Taylor 

expansion for p(z). 

For functions having less smoothness, the situation is rather different and seems 

to deserve fuller investigation. For instance, let did(t)= g(p)dpsinOdO, where 

t = pe i~ and 

fo f/ g(p)pdp = O, g(p)pSdp r O. 

Equation (16) then characterizes the solutions of 

(17) ~ Au = 0. 

Moreover, the function u(x, x) = I Y l satisfies 

f? lim - ~  u(x + rp cos O, y + rp sin 0) sin 0 dO g(.p)dp = 0 
r " * O  

for all (x,y) ,  but is not distributional solution of (17); see [10] for a related 

example. More general examples are easily constructed along the above lines; a 

C k- 3 function satisfying (16) may fail to satisfy the associated differential equation. 

In a related connection, Arsove [2] has shown, using a result of Kurt Meier, that 

for ~ c C  

1 
f u(z + rOd ( = 0 z lim 

r-*O r d g l = l  

if and only if u is holomorphic in .~. 

Finally, we take this opportunity to correct an attribution in [40]. There, in 
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Sect ion 9, we fo l lowed Li t t l ewood in credi t ing the  one-circle converse to  the  

mean  value theorem for  ha rmon ic  funct ions to Kellogg.  N o t  surpris ingly,  the 

result  is much  o lder ;  it  first appears ,  to the best o f  my knowledge ,  in a pape r  o f  

Vol te r ra  [36]. 
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